Global Research Journal of Public Health and Epidemiology: ISSN-2360-7920: Vol. 5(5): pp, 154-165, January, 2019. Copyright © 2019, Spring Journals

Medical Education Article

Impact of Consciousness Energy Healing Treatment on the Physicochemical and Thermal Properties of Cefazolin Sodium: A Complementary and Alternative Medicine

Dahryn Trivedi¹, Mahendra Kumar Trivedi¹, Alice Branton¹, Gopal Nayak¹, Snehasis Jana^{2,*}

¹Trivedi Global, Inc., Henderson, USA ²Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, India

*Corresponding Author: Snehasis Jana, Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, India. Tel: +91-022-25811234; Email: publication@trivedisrl.com

Accepted 2nd January, 2019.

Cefazolin is a semisynthetic broad-spectrum first-generation cephalosporin antibiotic useful for the treatment of a number of both Gram-positive and Gram-negative bacterial infections. The objective of this research work was to evaluate the impact of the Consciousness Energy Healing Treatment (the Trivedi Effect[®]) on the physicochemical, and thermal properties of cefazolin sodium powder using modern analytical techniques. Cefazolin powder sample was divided into two parts. One part of the sample was considered as a control sample (no Biofield Energy Treatment was provided), while the other part of the sample was received the Consciousness Energy Healing Treatment remotely by a renowned Biofield Energy Healer, Dahryn Trivedi and termed as a treated sample. The particle size values in the treated cefazolin sodium were decreased by 5.98%(d₁₀), 3.55%(d₅₀), 6.66%(d₉₀), and 5.89%{D(4,3)}; hence, the specific surface area increased by 4.54% compared to the control sample. The latent heat of evaporation and decomposition was significantly altered by 57.32% and -24.39% in the treated sample compared with the control sample. The total weight loss was significantly decreased by 68.92% and the residue amount was significantly increased by 519.64% in the treated cefazolin sodium sample compared with the control sample. The maximum thermal degradation temperature of the 1st and 2nd peaks of the treated sample was increased by 8.72% and 1.42%, respectively compared to the control sample. The Trivedi Effect[®]-Consciousness Energy Healing Treatment might have generated a new form of cefazolin sodium which would offer better solubility, dissolution rate, bioavailability, and thermal stability compared to the control sample. The Biofield Energy Treated cefazolin sodium would be very useful to design more efficacious pharmaceutical formulations that might offer better therapeutic response against urinary tract infections, respiratory tract infections, cellulitis, pneumonia, endocarditis, joint infection, biliary tract infections, blood infections, genital infections, and also prevent group B streptococcal disease at the time of delivery and before surgery, etc.

Keywords: Complementary and Alternative Medicine, Cefazolin sodium, The Trivedi Effect[®], Consciousness Energy Healing Treatment, Particle size, Surface area, DSC, TGA/DTG

1. INTRODUCTION

Cefazolin is a semisynthetic broad-spectrum first-generation cephalosporin antibiotic useful for the treatment of a number of both Gram-positive Staphylococcus (*i.e.*, aureus. Streptococcus pyogenes, Staphylococcus epidermidis, Streptococcus agalactiae. Streptococcus pneumonia, and other strains of streptococci) and Gram-negative (i.e., Proteus mirabilis, Escherichia coli, etc.) bacterial infections (Eljaaly et al., 2018; Kusaba, 2009). The mechanism of action involves the inhibition of bacterial cell wall synthesis (Katzung et al., 2015). Cefazolin used for the treatment of many diseases, i.e., urinary tract infections, respiratory tract infections, cellulitis, pneumonia, endocarditis, joint infection, biliary tract infections, blood infections, genital infections, and also prevent group B streptococcal disease in the time of delivery and before surgery, etc. (Eljaaly et al., 2018; Kusaba, 2009; Katzung et al., 2015). During pregnancy and breast feeding some amount of cefazolin enters in the breast milk, so general safety needs to follow in that period (Katzung et al., 2015; Allegaert et al., 2009). Some of the common side effects associated with the cefazolin medication are stomach pain, diarrhoea, vomiting, rash, blood dyscrasias, allergic reaction, etc. (Kusaba, 2009; Katzung et al., 2015). The release of free N-methylthiodiazole from cefazolin may hypoprothrombinemia (Stork, cause 2006). Cefazolin sodium is the sodium salt form of cefazolin available in various dosage form, i.e., injectable, powder for injection, eye drop, etc. (How et al., 1998). Physicochemical characteristics of cefazolin sodium are; it is white or near white crystalline powder, insoluble in acetone. chloroform, ethyl acetate, dichloromethane; slightly soluble in ethanol and methanol; and freely soluble in water and isopropanol; it has no fixed melting point, but decompose at the temperature of~193°C (Wang et al., 2012).

Intrinsic physicochemical properties of the pharmaceutical compound play a crucial role in its dissolution, absorption, and bioavailability profile in the body (Chereson, 2009). The Trivedi Effect[®]-Biofield Energy Healing Treatment has the significant impact on the crystallite size, particle size, surface area, and thermal behaviour of pharmaceutical compounds (Trivedi *et al.*, 2015g; e; Trivedi et al., 2017b). The Trivedi Effect[®] is a natural and only scientifically proven phenomenon in which a person can harness this inherently

intelligent energy from the "Universe" and transmit it anywhere on the planet through the possible mediation of neutrinos (Trivedi et al., 2016c). Every living organism possesses a kind of unique, infinite, para-dimensional electromagnetic field surrounding the body, originate from the continuous movements of the charged particles, ions, cells, blood/lymph flow, brain functions, heart, etc. in the body known as a "Biofield". This Biofield Energy Healing Therapy has been reported with significantly beneficial outcomes against various disease conditions (Rubik et al., 2015). The National Institutes of Health (NIH) and National Center for Complementary and Alternative Medicine (NIH) recommend and included the Energy therapy under the Complementary and Alternative Medicine (CAM) category along with homeopathy, traditional Chinese herbs and medicines, Ayurveda medicine, acupuncture. yoga, meditation. Reiki. hypnotherapy, Tai Chi, Qi Gong, aroma therapy, chiropractic/osteopathic manipulation, cranial sacral therapy, etc. These CAM has been well accepted by most of the U.S.A. people with advantages (Barnes et al., 2008; Koithan, 2009). Similarly, the significant impact of the Trivedi Effect[®]-Consciousness Energy Healing Treatment has been published in numerous peer-reviewed scientific journals in the field of material science (Trivedi et al., 2015f; h), chemical science (Trivedi et al., 2016a; b), pharmaceutical sciences (Trivedi et al., 2017a; c), agricultural sciences (Trivedi et al., 2015a; b), medical sciences (Trivedi et al., 2015c), microbiology (Trivedi et al., 2015c; d). Therefore, this experiment was designed to evaluate the impact of the Trivedi Effect[®]-Consciousness Energy Treatment on the physicochemical, Healing thermal, and behavioural properties of cefazolin sodium powder sample using particle size analysis (PSA), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), and thermogravimetric (TGA)/differential thermogravimetric analvsis analysis (DTG).

2. MATERIALS AND METHODS

2.1. Chemicals and Reagents

Cefazolin sodium ($C_{14}H_{13}N_8NaO_4S_3$) powder was purchased from Tokyo Chemical Industry Co.,

Ltd., Japan. Other chemicals used in the experiments were of analytical grade available in India.

2.2. Consciousness Energy Healing Treatment Strategies

The test sample, i.e., cefazolin sodium powder sample was divided into two parts. One part of the test sample was treated with the Trivedi Effect[®]-Consciousness Energy Healing Treatment remotely under standard laboratory conditions for 3 minutes by the renowned Biofield Energy Healer, Dahryn Trivedi, USA, and known as the Biofield Energy Treated sample. However, the other part of cefazolin powder sample was treated with a "sham" healer for the comparison purpose called a control sample. The "sham" healer did not have any knowledge about the Biofield Energy Treatment. After that, the Biofield Energy Treated and control cefazolin sodium were kept in sealed condition and characterized using PSA, PXRD, DSC, and TGA techniques.

2.3. Characterization

The PSA, PXRD, DSC, and TGA analysis of cefazolin sodium were performed. The PSA was performed using Malvern Master sizer 2000, from the UK with a detection range between 0.01 µm to 3000 µm using the wet method (Trivedi et al., 2017d; e). The PXRD analysis of cefazolin sodium powder sample was performed with the help of Rigaku MiniFlex-II Desktop X-ray diffractometer (Japan) (Rigaku, 1997; Zhang et al., 2015). The average size of crystallites was calculated from PXRD data using the Scherrer's formula (1) $G = k\lambda/\beta \cos\theta....(1)$ Where G is the crystallite size in nm, k is the equipment constant (0.94), λ is the radiation wavelength (0.154056 nm for K α 1 emission), β is the full-width at half maximum, and θ is the Bragg angle (Langford et al., 2017).

Similarly, the DSC analysis of cefazolin sodium was performed with the help of DSC Q200, TA instruments. The TGA/DTG thermograms of cefazolin sodium were obtained with the help of TGA Q50 TA instruments (Trivedi *et al.*, 2017d; e).

The % change in particle size, specific surface area (SSA), peak intensity, crystallite size,

melting point, latent heat, weight loss and the maximum thermal degradation temperature (T_{max}) of the Biofield Energy Treated sample was calculated compared with the control sample using the following equation 2:

% change = $\frac{[\text{Treated -Control }]}{\text{Control}} \times 100.....(2)$

3. RESULTS AND DISCUSSION

3.1. Particle Size Analysis (PSA)

The PSD analytical data of both the control and Biofield Energy Treated cefazolin powder sample are presented in Table 1. The particle size values of the control cefazolin sodium powder sample at d_{10} , d_{50} , d_{90} , and D (4,3) were 5.16 μ m, 38.3 µm, 182.74 µm, and 69.48 µm, respectively. Likewise, the particle sizes of the Biofield Energy Treated cefazolin sodium at d₁₀, d₅₀, d₉₀, and D (4,3) were 4.86 µm, 36.94 µm, 170.57 µm, and 70.57 µm, respectively. The particle size values in the Biofield Energy Treated cefazolin sodium sample were significantly decreased at d_{10} , d_{50} , d_{90} , and D (4,3) by 5.98%, 3.55%, 6.66%, and 5.89% compared to the control sample. The specific surface area of the Biofield Energy Treated cefazolin sodium powder sample (0.516m²/g) was increased by 4.67% compared to the control sample $(0.493 \text{m}^2/\text{g}).$ The Trivedi Effect[®]-Consciousness Energy Healing Treatment might have fractured the larger particle into smaller one, hence increased surface area. The reduced particle size increases the surface area and improves the solubility, dissolution rate, and bioavailability in the physiological system (Chereson, 2009; Mosharrof et al., 1995; Buckton et al., 1992). Therefore, the Trivedi Effect[®]-Consciousness Energy Healing Treated cefazolin might offer better solubility, dissolution rate, and bioavailability compared with the untreated sample.

Table 1: Particle size distribution of the control and Biofield Energy Treated cefazolin sodium.

Parameter	d ₁₀ (μm)	d₅₀ (µm)	d ₉₀ (µm)	D(4,3)(µm)	SSA(m²/g)
Control	5.16	38.30	182.74	69.48	0.493
Biofield Treated	4.86	36.94	170.57	65.38	0.516
Percent change* (%)	-5.98	-3.55	-6.66	-5.89	4.67

 d_{10} , d_{50} , and d_{90} : particle diameter corresponding to 10%, 50%, and 90% of the cumulative distribution, D(4,3): the average mass-volume diameter, and SSA: the specific surface area. denotes the percentage change in the Particle size distribution of the Biofield Energy Treated sample with respect to the control sample.

3.1. Powder X-ray Diffraction (PXRD) Analysis

The PXRD diffractograms of the control and Biofield Energy Treated cefazolin sodium samples did not show any clear, sharp, and intense peaks (Figure 1). Therefore, it was difficult to compare the Biofield Energy Treated cefazolin sodium with the control sample. It was concluded that both the samples were amorphous in nature and the Biofield Energy Treatment might not affect much the crystallinity of cefazolin sodium.

Figure 1: PXRD diffractograms of the control and Biofield Energy Treated cefazolin sodium.

3.3. Differential Scanning Calorimetry (DSC) Analysis

The DSC thermograms of the control and Biofield Energy Treated cefazolin sodium showed the endothermic peak at 92.96°C and 90.30°C, respectively(Figure 2). The thermogram pattern and melting point closely matched to the reported data (Wang *et al.*, 2012). The evaporation temperature of the Biofield Energy Treated cefazolin sodium was slightly decreased by 2.86% compared with the control sample(Table 2). Similarly, the control and Biofield Energy Treated cefazolin sodium samples showed exothermic peaks at 176.2°C and 176.89°C, respectively (Figure 2). The decomposition temperature of the Biofield Energy Treated cefazolin sodium was slightly increased by 0.39% compared with the control sample (Table 2).

Figure 2: DSC thermograms of the control and Biofield Energy Treated cefazolin sodium.

Sampla			∆H(J/g)	
Sample	Evaporation Temp (°C)	Decomposition Temp (°C)	Evaporation	Decomposition
Control Sample	92.96	176.20	6.49	62.16
Biofield Energy Treated	90.30	176.89	10.21	47.00
% Change*	-2.86	0.39	57.32	-24.39

Table 2: DSC data for both control and Biofield Energy Treated samples of cefazolin sodium.

 Δ H: Latent heat of evaporation/decomposition, ^{*}denotes the percentage change of the Biofield Energy Treated cefazolin sodium with respect to the control sample.

The latent heat of evaporation ($\Delta H_{evaporation}$) of the Biofield Energy Treated cefazolin sodium (10.21 J/g) was significantly increased by 57.32% compared with the control sample (6.49 J/g) (Table 2). But, the latent heat of decomposition ($\Delta H_{decomposition}$) of the Biofield Energy Treated cefazolin sodium (47 J/g) was significantly decreased by 24.39% compared with the

control sample (62.16 J/g) (Table 2).The Trivedi Effect[®]-Consciousness Energy Healing Treatment mighthave disrupted the molecular chains and crystal structure of cefazolin (Zhao *et al.*, 2015), which could be the root cause of altered thermal stability of the Biofield Energy Treated sample compared with the control sample.

 Table 3: TGA/DTG data of the control and Biofield Energy Treated samples of cefazolin sodium.

Sample	TGA		DTG		
	Total weight loss (%)	Residue %	Peak 1 T _{max} (°C)	Peak 2 T _{max} (°C)	
Control	88.29	11.71	182.03	612.62	
Biofield Energy Treated	27.44	72.56	197.9	621.29	
% Change*	-68.92	519.64	8.72	1.42	

denotes the percentage change of the Biofield Energy Treated sample with respect to the control sample, T_{max} = the temperature at which maximum weight loss takes place in TG or peak temperature in DTG.

3.4. Thermal Gravimetric Analysis (TGA)/ Differential Thermogravimetric Analysis (DTG)

The control and Biofield Energy Treated cefazolin sodium samples displayed three steps of thermal degradation in the TGA thermograms (Figure 3). The total weight loss in Biofield Energy Treated sample was significantly decreased by 68.92% compared with the control sample (Table 3). Hence, the residue amount was significantly increased by 519.64% in the Biofield Energy Treated cefazolin sodium compared to the control sample (Table 3).

The DTG thermograms of the control and Biofield Energy Treated cefazolin sodium exhibited two peaksin the thermograms (Figure 4). The maximum thermal degradation temperature (T_{max}) of the 1st and 2nd peaks of the Biofield Energy

Treated sample was increased by 8.72% and 1.42% compared to the control sample (Table 3). Overall, thermal analysis (i.e., DSC and TGA/DTG) of cefazolin sodium samples revealed that the thermal stability of the Biofield Energy Treated sample was significantly improved compared with the control sample.

Figure 3: TGA thermograms of the control and Biofield Energy Treated cefazolin sodium.

Figure 4: DTG thermograms of the control and Biofield Energy Treated cefazolin sodium.

4. CONCLUSIONS

The Trivedi Effect[®]-Consciousness Energy Healing Treatment has significant effects on the particle size, surface area, and thermal properties of cefazolin sodium powder sample. The particle size values in the Biofield Energy Treated cefazolin sodium were significantly decreased by 5.98%, 3.55%, 6.66%, and 5.89% at d_{10} , d_{50} , d_{90} , and D(4,3), respectively compared to the control sample. Hence, the specific surface area of Biofield Energy Treated cefazolin sodium was increased by 4.54% compared to the control sample. The $\Delta H_{evaporation}$ and $\Delta H_{decomposition}$ was significantly altered by 57.32% and -24.39% in the Biofield Energy Treated sample compared with the control sample. The total weight loss was significantly decreased by 68.92%, and the residue amount was significantly increased by 519.64% in the Biofield Energy Treated cefazolin sodium sample compared with the control sample. The T_{max} of the 1st and 2nd peaks of Biofield Energy Treated sample was increased by 8.72% and 1.42% compared to the control sample. The Trivedi Effect®-Consciousness Energy Healing Treatment might have generated a new form of cefazolin sodium which would offer better solubility, dissolution rate, bioavailability, and thermal stability compared to the control sample. The Consciousness Energy Healing Treated cefazolin sodium would be very useful to design more efficacious pharmaceutical formulations that might offer better therapeutic response against urinary tract infections, respiratory tract infections, cellulitis, pneumonia, endocarditis, joint infection, biliary tract infections, blood infections, genital infections, and also prevent group B streptococcal disease at the time of delivery and before surgery, etc.

ACKNOWLEDGEMENTS

The authors are grateful to Central Leather Research Institute, SIPRA Lab. Ltd., Trivedi Science, Trivedi Global, Inc., Trivedi Testimonials, and Trivedi Master Wellness for their assistance and support during this work.

REFERENCES

- Allegaert K, Van Mieghem T, Verbesselt R, Vanhole C, Devlieger R, et al. (2009) Cefazolin plasma protein binding saturability during pregnancy. Methods Find Exp Clin Pharmacol. 31: 25-28.
- Barnes PM, Bloom B, Nahin RL (2008) Complementary and alternative medicine use among adults and children: United States, 2007. Natl Health Stat Report 12: 1-23.
- Buckton G, Beezer AE (1992) The relationship between particle size and solubility. Int J Pharmaceutics 82: R7-R10.

- Chereson R (2009) Bioavailability, bioequivalence, and drug selection. In: Makoid CM, Vuchetich PJ, Banakar UV (Eds) Basic pharmacokinetics (1st Edn) Pharmaceutical Press, London.
- Desktop X-ray Diffractometer "MiniFlex+". The Rigaku Journal 14: 29-36, 1997.
- Eljaaly K, Alshehri S, Erstad BL (2018) Systematic review and meta-analysis of the safety of antistaphylococcal penicillins compared to cefazolin. Antimicrob Agents Chemother 62: e01816-17
- How TH, Loo WY, Yow KL, Lim LY, Chan EW, Ho PC, Chan SY (1998) Chemical stability of pharmacy-compounded cefazolin sodium eye drops. J Clin Pharm Ther 23: 41-47.
- Katzung, Trevor AJ (2015) Basic & Clinical Pharmacology. New York: McGraw Hill Education. pp. 776-778.
- Koithan M (2009) Introducing complementary and alternative therapies. J Nurse Pract 5: 18-20.
- Kusaba T (2009) Safety and efficacy of cefazolin sodium in the management of bacterial infection and in surgical prophylaxis. Clinical Medicine Insights: Therapeutics. 1: 1607-1615
- Langford JI, Wilson AJC (1978) Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J Appl Cryst 11: 102-113.
- Mosharrof M, Nystrom C (1995) The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs. Int J Pharm 122: 35-47.
- Rubik B, Muehsam D, Hammerschlag R, Jain S (2015) Biofield science and healing: History, terminology, and concepts. Glob Adv Health Med 4: 8-14.
- Stork CM (2006) Antibiotics, antifungals, and antivirals. New York: McGraw-Hill. p. 847.
- ^aTrivedi MK, Branton A, Trivedi D, Nayak G, Lee AC, Hancharuk A, Sand CM, Schnitzer DJ, Thanasi R, Meagher EM, Pyka FA, Gerber GR, Stromsnas JC, Shapiro JM, Streicher LN, Hachfeld LM, Hornung MC, Rowe PM, Henderson SJ, Benson SM, Holmlund ST, Salters SP, Gangwar G, Jana S (2017) An investigation of the Trivedi Effect®-Energy of Consciousness Healing Treatment to modulate the immunomodulatory effect of

herbomineral formulation in male Sprague Dawley rats. Advances in Materials 5: 144-153.

- ^bTrivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Evaluation of plant growth, yield and yield attributes of biofield energy treated mustard (Brassica juncea) and chick pea (Cicer arietinum) seeds. Agriculture, Forestry and Fisheries 4: 291-295.
- ^cTrivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Antimicrobial sensitivity, biochemical characteristics and biotyping of Staphylococcus saprophyticus: An impact of biofield energy treatment. J Women's Health Care 4: 271.
- ^aTrivedi MK, Branton A, Trivedi D, Nayak G, Panda P, Jana S (2016) Isotopic abundance ratio analysis of 1,2,3-trimethoxybenzene (TMB) after biofield energy treatment (the Trivedi Effect®) using gas chromatography-mass spectrometry, American Journal of Applied Chemistry 4: 132-140.
- ^bTrivedi MK, Branton A, Trivedi D, Nayak G, Sethi KK, Jana S (2016) Evaluation of isotopic abundance ratio in biofield energy treated nitrophenol derivatives using gas chromatography-mass spectrometry. American Journal of Chemical Engineering 4: 68-77.
- ^dTrivedi MK, Branton A, Trivedi D, Nayak G, Shettigar H, Gangwar M, Jana S (2015) Antibiogram of multidrug-resistant isolates of Pseudomonas aeruginosa after biofield treatment. J Infect Dis Ther 3: 244.
- ^bTrivedi MK, Branton A, Trivedi D, Nayak G, Wellborn BD, Smith DL, Koster DA, Patric E, Singh J, Vagt KS, Callas KJ, Panda P, Sethi KK, Jana S (2017) Characterization of physicochemical, thermal, structural, and behavioral properties of magnesium gluconate after treatment with the Energy of Consciousness. International Journal of Pharmacy and Chemistry 3: 1-12.
- ^cTrivedi MK, Branton A, Trivedi D, Nayak G, Wellborn BD, Smith DL, Koster DA, Patric E, Singh J, Vagt KS, Callas KJ, Panda P, Sethi KK, Jana S (2017) Characterization of physical, structural, thermal, and behavioral properties of the consciousness healing treated zinc chloride. World Journal of Applied Chemistry 2: 57-66.

^eTrivedi MK, Branton A, Trivedi D, Shettigar H,

Bairwa K, Jana S (2015) Fourier transform infrared and ultraviolet-visible spectroscopic characterization of biofield treated salicylic acid and sparfloxacin. Nat Prod Chem Res 3:186.

- ^fTrivedi MK, Mohan R, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S (2015) Evaluation of atomic, physical, and thermal properties of bismuth oxide powder: An impact of biofield energy treatment. American Journal of Nano Research and Applications 3: 94-98.
- ^cTrivedi MK, Mohan TRR (2016) Biofield energy signals, energy transmission and neutrinos. American Journal of Modern Physics 5: 172-176.
- ^gTrivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Spectroscopic characterization of chloramphenicol and tetracycline: An impact of biofield. Pharm Anal Acta 6: 395.
- ^hTrivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) In vitro evaluation of biofield treatment on cancer biomarkers involved in endometrial and prostate cancer cell lines. J Cancer Sci Ther 7: 253-257.
- ^dTrivedi MK, Sethi KK, Panda P, Jana S (2017) A comprehensive physicochemical, thermal, and spectroscopic characterization of zinc (II) chloride using X-ray diffraction, particle size distribution, differential scanning thermogravimetric calorimetry. analysis/differential thermogravimetric analysis, ultraviolet-visible, and Fourier transform-infrared spectroscopy. International Journal of Pharmaceutical Investigation 7: 33-40.
- *Trivedi MK, Šethi KK, Panda P, Jana S (2017) Physicochemical, thermal and spectroscopic characterization of sodium selenate using XRD, PSD, DSC, TGA/DTG, UV-vis, and FT-IR. Marmara Pharmaceutical Journal 21/2: 311-318.
- ^hTrivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S (2015) Physicochemical and atomic characterization of silver powder after biofield treatment. J Bioengineer Biomedical Sci 5: 165.
- Wang J, Qian Y, Zhang M, Wu J, Yang Z (2012) Cefazolin sodium pentahydrate crystal and its molecular assembly preparation method. United States Patent US 8,178,521 B2, 1-8.
- Zhang T, Paluch K, Scalabrino G, Frankish N,

Healy AM, Sheridan H (2015) Molecular structure studies of (1S,2S)-2-benzyl-2,3-dihydro-2-(1Hinden-2-yl)-1H-inden-1-ol. J Mol Struct 1083: 286-299.

•

Zhao Z, Xie M, Li Y, Chen A, Li G, Zhang J, Hu H, Wang X, Li S (2015) Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO₂. Int J Nanomedicine 10: 3171-3181.