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Abstract: Food production needs to increase to satisfy the demand due to increasing human population worldwide. To 

minimize this food crisis, an increase in the rice production is necessary in many countries. The current study was undertaken to 

evaluate the impact of Mr. Trivedi’s biofield energy treatment on rice (Oryza sativa) for its growth-germination of seedling, 

glutathione (GSH) content in seedling and mature plants, indole acetic acid (IAA) content in shoots and roots and DNA 

polymorphism by random amplified polymorphic-DNA (RAPD). The sample of O. sativa cv, 644 was divided into two groups. 

One group was remained as untreated and coded as control, while the other group was subjected to Mr. Trivedi for biofield 

energy treatment and denoted as treated sample. The growth-germination of O. sativa seedling data exhibited that the biofield 

treated seeds was germinated faster on day 3 as compared to control (on day 5). The shoot and root length of seedling was slightly 

increased in the treated seeds of 10 days old with respect to untreated seeds. Moreover, the plant antioxidant i.e. GSH content in 

seedling and in mature plants was significantly increased by 639.26% and 56.24%, respectively as compared to untreated sample. 

Additionally, the plant growth regulatory constituent i.e. IAA level in root and shoot was significantly (p<0.05) increased by 

106.90% and 20.35%, respectively with respect to control. Besides, the DNA fingerprinting data using RAPD, revealed that the 

treated sample showed an average range of 5 to 46% of DNA polymorphism as compared to control. The overall results 

envisaged that the biofield energy treatment on rice seeds showed a significant improvement in germination, growth of roots and 

shoots, GSH and IAA content in the treated sample. In conclusion, the treatment of biofield energy on rice seeds could be used as 

an alternative way to increase the production of rice. 
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1. Introduction 

In Asia, Latin America, and Africa, rice (Oryza sativa) is 

essential for the supplement of nutrition in much of the 

population as a staple food. Over half of the world’s 

populations are consuming rice as their main food source. 

About half of the world’s rice production is from China and 

India. The largest consumers are from China (about 30%) and 

about 25% consumers from India of the world’s consumption. 

It is essential to increase the rice production in order to solve 

the crisis of rice as foodstuff [1]. The gross agricultural 

productivity depends on the most vital abiotic stress salinity 

i.e. dissolved salts in water. The metabolic impairment in the 

plant cell occurs due to the osmotic and toxic effects of salt 

concentration in water. Generation of reactive oxygen species 

(ROS) is the main output of such metabolic impairment during 

salinity stress [2-4]. The ROS such as superoxide radical (O
2-

), 

hydrogen peroxide (H2O2), and hydroxyl radical (OH
-
) are 

produced through the reduction of molecular O2 during 

aerobic metabolism in mitochondria. Apart from metabolic 

derived ROS, plant cell also produces singlet oxygen (
1
O2) in 

the chloroplast during photosynthesis [5, 6]. Among the 

various antioxidant pathways, the ascorbate–glutathione 

(ASC–GSH) cycle has been played an important role [7]. In 

plants, GSH is crucial for biotic and abiotic stress 

management. It is a pivotal component of the ASC–GSH cycle, 

a system that reduces poisonous hydrogen peroxide produced 

during photorespiration in peroxisomes. GSH and 
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GSH-dependent enzymes represent a regulated defense 

against oxidative stress not only against ROS but also against 

their toxic products. Plants communicate with a great variety 

of symbiotic partners, above and below ground. Continuous 

monitoring of signals of biotic and abiotic environmental 

influences allows the plants to generate appropriate response 

behavior [8]. Recent advances in molecular biology, 

development of polymerase chain reaction (PCR), and DNA 

sequencing have resulted in a powerful technique that can be 

used for the characterization of genetic diversity. Besides, the 

genetic diversity can also be assessed by the study of 

morpho-agronomic variability for plant breeders. This is the 

only approach still used by rice breeders. For characterization 

of genetic profile a powerful tool has been developed as the 

molecular marker, so called DNA fingerprinting [9]. Although 

more than 40,000 rice varieties were reported worldwide, 

while few species have been used in practical breeding. 

Therefore, better understanding regarding genetic makeup of 

used rice germplasm is a critical issue for rice breeding [10]. 

In the present work, the level of GSH in plant cell was taken 

as a biochemical marker and also characterized the genetic 

profile of O. sativa by RAPD. Nowadays, biofield energy 

treatment has been known as lucrative surrogate approach that 

may be useful in that concern. The National Center for 

Complementary and Integrative Health (NCCIH), allows the 

use of Complementary and Alternative Medicine (CAM) 

therapies like biofield energy as an alternative in the 

healthcare field. About 36% of US citizens regularly use some 

form of CAM [11], in their daily activities. CAM embraces 

numerous energy-healing therapies; biofield therapy is one of 

the energy medicine used worldwide to improve the overall 

human health. Mr. Trivedi’s unique biofield treatment (The 

Trivedi effect
®
) has been extensively contributes in scientific 

communities in the field of agricultural science [12-15] and 

chemical science [16]. Due to the necessity of rice as the prime 

food resource and to improve overall productivity of rice 

plants an effective control measure need to be established. 

Under these circumstances, the present work was undertaken 

to evaluate the effect of biofield energy treatment on rice in 

relation to germination growth in seedlings, level of GSH and 

IAA and the molecular analysis using DNA fingerprinting. 

2. Materials and Methods 

The seeds of Oryza sativa (O. sativa cv, 6444) were divided 

into two parts. One part was considered as control, no 

treatment was given. The other part was coded as treated and 

subjected to Mr. Trivedi’s biofield treatment. The random 

amplified polymorphic DNA (RAPD) analysis was performed 

using Ultrapure Genomic DNA Prep Kit; Cat KT 83 

(Bangalore Genei, India). 

2.1. Biofield Treatment Strategy 

The treated sample of rice seeds was subjected to Mr. 

Trivedi’s biofield treatment under laboratory conditions. Mr. 

Trivedi provided the treatment through his unique energy 

transmission process to the treated group without touch. The 

treated sample was assessed for growth germination of 

seedlings, glutathione (GSH) level and indole acetic acid 

(IAA) content in roots and shoots of rice plant. 

2.2. Growth Germination of Rice Seedlings 

Control and treated rice seeds (Oryza sativa) were soaked 

for 6 hours in distilled water. The water soaked seeds were 

wrapped with moist tissue paper and kept in dark condition for 

germination. The percent of germinated seeds and length of 

root and shoot were recorded. 

2.3. Measurement of Glutathione in Rice Leaves 

For the extraction of GSH approximate 5 gm of rice leaves 

were crushed and mixed with 5 mL of 80% chilled methanol 

(as a solvent). Then the extract was sonicated for about 10 

minutes. Then 1 mL of 5% tricholoroacetic acid (TCA) was 

added to the extract. This sample was used for the analysis of 

GSH content. The GSH levels were estimated as per Moron et 

al. TCA was taken as blank [17]. 

2.4. Measurement of Indole Acetic Acid (IAA) Content in 

Shoots and Roots of Rice Seedlings 

For the extraction of IAA approximate 200 mg plant tissue 

was grinded with 5 mL of 80% chilled methanol. The extract 

was filtered through Whatmann filter paper (No. 1). After 

filtration the final volume of extract was made upto 10 mL 

using 80% chilled methanol. Then optical density was 

measured after 30 minutes at 530 nm using ultra-violet visible 

spectrophotometer. IAA was analyzed using Tang and 

Bonner’s method. Freshly prepared Salkowski’s reagent was 

used for the detection of IAA content in shoots and roots of 

rice seedlings [18]. 

2.5. Isolation of Plant Genomic DNA Using CTAB Method 

After germination when the plants were reached the 

appropriate stage, leaves disc were harvested from each plant. 

Genomic DNA was isolated according to standard 

cetyl-trimethyl-ammonium bromide (CTAB) method [19]. 

Approximate 200 mg of plant tissue (seeds) were grind to a fine 

paste in approximately 500 µL of CTAB buffer. The mixture 

(CTAB/plant extract) was transferred to a microfuge tube, and 

incubated for about 15 min at 55oC in a recirculating water bath. 

After incubation, the mixture was centrifuged at 12000g for 5 

min and the supernatant was transfer to a clean microfuge tube. 

After mixing with chloroform and iso-amyl alcohol followed by 

centrifugation the aqueous layers were isolated which contains 

DNA. Then, ammonium acetate followed by chilled absolute 

ethanol was added to precipitate the DNA and stored at -20oC. 

The RNase treatment was provided to remove any RNA 

materials followed by washing with DNA free sterile solution. 

The quantity of genomic DNA was then measured at 260 nm 

with the help of a spectrophotometer [20]. 

2.6. Random Amplified Polymorphic DNA (RAPD) Analysis 

DNA concentration was considered about 25 ng/µL using 
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distilled deionized water for polymerase chain reaction (PCR) 

experiment. RAPD analysis was performed on the treated 

sample of rice seeds using five RAPD primers, which were 

labelled as RPL 6A, RPL 13A, RPL 16A, RPL 18A, and RPL 

19A were adopted from earlier studies. The PCR mixture 

including 2.5 µL each of buffer, 4.0 mM each of dNTP, 2.5 µM 

each of primer, 5.0 µL (approximately 20 ng) of each genomic 

DNA, 2U each of Thermus aquaticus (Taq) polymerase, 1.5 

µL of MgCl2 and 9.5 µL of water in a total of 25 µL with the 

following PCR amplification protocol; initial denaturation at 

94
o
C for 5 min, followed by 40 cycles of annealing at 94

o
C for 

1 min, annealing at 36°C for 1 min, and extension at 72°C for 

2 min. Final extension cycle was carried out at 72°C for 10 

min. Amplified PCR products (12 µL of each) from control 

and treated samples were loaded on to 1.5% agarose gel and 

resolved by electrophoresis at 75 volts. Each fragment was 

estimated using 100 bp ladder (Genei
TM

; Cat # RMBD19S). 

The gel was subsequently stained with ethidium bromide and 

viewed under UV-light [21]. Photographs were documented 

subsequently. The following formula was used for calculation 

of percentage of polymorphism. 

Percent polymorphism = A/B×100 

Where, A = number of polymorphic bands in treated plant; 

and B = number of polymorphic bands in control plant. 

3. Statistical Analysis 

Data from growth germination of seedling and indole acetic 

acid (IAA) were expressed as Mean ± S.E.M. and analyzed 

through a Student’s t-test to ascertain statistical differences 

between control and treated rice seeds at the end of the 

experiment. A probability level of p<0·05 was considered as 

statistically significant as compared to the control. 

4. Results and Discussion 

4.1. Growth Germination of Rice Seedlings 

Oryza sativa is one of the few plant species that has the 

ability to tolerate prolonged soil flooding or complete 

submergence conditions. Elongation rate of submerged shoot 

organs is faster than normal rate to develop aerenchyma. 

However, the rice seeds are able to germinate in anaerobic 

environment by means of coleoptile elongation [22]. The 

growth germination of rice seedling data of control and treated 

samples are shown in Table 1. 

Table 1. Growth-germination of rice (Oryza sativa) seedlings on 10 days old 

plant. 

Group 
Germination 

(Day) 

Germination 

(%) 

Length (cm) (Mean ± 

S.E.M.) 

Shoot Root 

Control 5th 100 5.7 ± 0.013 8.8 ± 0.05 

Treated 3rd 100 5.8 ± 0.021 8.9 ± 0.05 

n = 100; S.E.M.: Standard error of mean 

Based on the obtained results, the control seeds of O. sativa 

were absolutely germinated on day 5, while the biofield 

treated seeds were germinated on day 3 with 100% 

germination. After germination, the tenth days old rice plants 

shoot and roots were measured. The shoot length in control 

sample was 5.7 cm and in treated sample it was 5.8 cm (n 

=100). The shoot length in the treated sample was slightly 

increased as compared to the control. Moreover, the length of 

root in control sample was 8.8 cm and in the treated sample it 

was 8.9 cm (n = 100). The root length in the treated sample 

was also slightly increased with respect to the control. The 

seeds of majority plant species have failed to germinate due to 

deprive of oxygen and causes metabolic abnormality i.e. 

anoxia. Based on responses to availability of oxygen, seeds 

can be categorized. The starchy seeds (e.g. O. sativa) have the 

capability to maintain high energy metabolism under oxygen 

deprive condition as compared with the fatty seeds (e.g. 

Ricinus communis) [23, 24]. Based on the findings, it is 

assumed that the early germination in biofield energy treated 

sample may be due to increase in the ability of oxygen 

mediated metabolism that ultimately shortens the germination 

time as compared with the untreated seeds. However, several 

researchers have reported the, decline in oxygen concentration 

affect germination of oat and barley. In the same situation i.e. 

deprive in oxygen, rice can behaves different phenomenon. 

The growth of root was suppressed, while the growth of shoot 

was increased [25]. 

4.2. Measurement of Glutathione in Rice Leaves 

Sulphur is an essential component of all living organisms 

for protein synthesis. It is the integral constituent of various 

amino acids and cellular endogenous components like GSH. 

GSH (γ-L-glutamyl-L-cysteinylglycine) is a sulphur 

containing thiol tripeptide, found in most of the organisms 

including plants. Deficiency of sulphur retard the growth of 

shoot, while did not affect the growth of the roots [8, 26]. The 

level of endogenous GSH of control and treated samples in 

both seedling and mature plants are illustrated in Table 2. 

Table 2. The glutathione (GSH) level on seedlings and mature plants in rice 

(Oryza sativa). 

Leaves type Group 
Endogenous 

glutathione (mM) 
Increased (%) 

Seedling 
Control 0.163 

639.26 
Treated 1.205 

Mature 
Control 0.521 

56.24 
Treated  0.814 

The concentration of endogenous GSH in control seedling 

was 0.163 mM and in treated sample was 1.205 mM. The 

result indicated that the GSH level in seedling was increased 

639.26% in the biofield energy treated sample as compared to 

the naive seeds. Furthermore, the concentration of GSH in 

mature plants leaves of treated sample was 0.814 mM as 

compared with the untreated seeds i.e. 0.521 mM. The result 

revealed 56.24% increased GSH content in the leaves of 

mature plants in treated group (Table 2). The antioxidant 

network in plants is complex in nature. Due to hazardous 
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environmental conditions ROS can be generated in plants. To 

fight and maintain a steady-state level against ROS, plants 

itself can evolve several antioxidant enzymes including GSH. 

It helped to scavenge the excessive ROS through 

redox-homeostatic mechanism [27-29]. More generation of 

ROS impart intrinsic metabolism in plant cell negatively [30]. 

In this experiment, it is assumed that the increased in GSH 

content in the biofield treated sample might accelerate the rate 

of intrinsic metabolism. Hence, this data were well supported 

with early germination of rice seedling in the biofield treated 

group (Table 1). Nowadays, some unequivocal evidence has 

emphasized that apart from redox homeostatic and cell 

signaling, GSH plays an important role as defense reaction. 

Based on mutant and mapping resources information from 

Arabidopsis mutants database, a small molecule of thiol 

compound plays as a heart of regulator of plants growth, 

development and defense responses against environmental 

hazardous [31]. 

4.3. Measurement of Indole Acetic Acid (IAA) Content in 

Shoots and Roots of Rice Seedlings 

Auxins are the first class of plant hormones responsible for 

growth and development of plants. IAA is one of the principal 

auxin i.e. plant growth substance produced by several 

plant-associated commensal bacteria. Among plant 

microbiota some bacteria are pathogenic to plants. Auxin 

production is the key factor for determination of plant 

pathogenicity. More level of IAA is less chances of plant 

infection [32, 33]. The IAA content in rice shoots and roots of 

both control and treated samples are shown in Table 3. 

Table 3. The indole acetic acid (IAA) content in shoots and roots of rice 

(Oryza sativa). 

IAA in rice root 

Group 

IAA (µg/g) Mean IAA 

(µg/g) (Mean 

± S.E.M.) 

% 

Increase Sample 1 Sample 2 Sample 3 

Control 0.7 0.8 1.1 0.87 ± 0.12 
106.90 

Treated 1.4 1.8 2.2 1.80* ± 0.23 

IAA in rice shoot 

Control 4.0 4.3 3.8 4.03 ± 0.15 
20.35 

Treated 5.1 5.3 4.15 4.85 ± 0.35 

IAA: Indole acetic acid; S.E.M.: Standard error of mean; n = 3; *P< 0.05 

In this experiment, the IAA content of control sample was 

0.87 µg/g, while in treated sample it was increased 

significantly (p<0.023) to 1.80 µg/g in rice roots. There was 

106.90% increased of IAA content in rice roots after biofield 

energy treatment. Furthermore, the level of IAA in rice shoots 

was also increased in the treated group as 4.85 µg/g as 

compared to the control i.e. 4.03 µg/g. The data showed  

20.35% increase in the IAA constituent in the shoots of 

biofield treated group. Based on the findings, it is assumed 

that the increased IAA content in roots and shoots after 

biofield energy treatment might be helpful for their growth 

and overall development of plants. Besides, high level of 

auxins i.e. IAA in plants cells indirectly indicates the less 

numbers of pathogenic bacteria, because only the 

plant-associated beneficial bacteria are able to produce high 

abundance of auxins. There are several methods existed for 

the determination of IAA in growing roots and shoots. 

However, all the methods are time-consuming. In this 

experiment we have used Salkowski test based on colorimetric 

principle for estimation of IAA, as this test is very simple, 

rapid, and cheap [34-36]. This technique was also proven for 

its usefulness for the screening of mutant bacteria affected 

auxins synthesis [37]. 

4.4. Random Amplified Polymorphic DNA (RAPD) Analysis 

Based on several reports, it was established that the 

polymorphic DNA is responsible to give information about an 

ideal genetic markers. This was happened due to its selectively 

neutral nucleotide sequence and distinct genomes pattern [38, 

39]. Here, RAPD was used as a DNA fingerprinting technique 

for evaluation of rice seeds. The control and treated samples 

were evaluated based on their various RAPD patterns. It is 

very simple to detect because there is no need of DNA 

sequence information or synthesis of specific primers. It is a 

preferred tool being used nowadays to correlate the genetic 

similarity or mutations between species. The simplicity and 

wide field acceptability of RAPD technique due to short 

nucleotide primers, which were unrelated to known DNA 

sequences of the target organism [40]. The DNA 

fingerprinting by RAPD method was performed using five 

primers in the control and treated samples. The data are shown 

in Fig. 1, and the polymorphic bands are marked by arrows. 

The RAPD patterns of treated sample showed some unique 

and dissimilar patterns. 

 

Figure 1. Random amplified polymorphic-DNA (RAPD) profile of rice seeds 

(Oryza sativa) generated using Genei five RAPD primers, RPL 6A, RPL 13A, 

RPL 16A, RPL 18A and RPL 19A. 1: Control; 2: Treated; M: 100 bp DNA 

Ladder. 
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DNA polymorphism analyzed by the RAPD analysis was 

presented in Table 4. The level of polymorphism was found in 

an average range of 5 to 46% in the treated sample as 

compared to the control in rice seeds after the biofield energy 

treatment. The highest change in DNA sequence (46%) was 

observed in the treated group with RPL 19A primer as 

compared to the control. A very less change was found in the 

treated group with RPL 16A primer as compared to the control. 

However, RPL 13A primer did not show any response against 

the treated sample. Biofield energy treatment could be 

responsible to improve the GSH and IAA content in rice 

shoots and roots. Based on the findings of growth germination 

pattern of seedling, GSH level, and IAA content followed by 

RAPD analysis there was positive impact of Mr. Trivedi’s 

biofield energy treatment on the seeds of O. sativa. Based on 

these results, it is expected that biofield energy treatment has 

the scope to be an alternative approach related to improve the 

plant growth, development and simultaneously could be 

reduce the pathogenicity. 

Table 4. DNA polymorphism analyzed by random amplified 

polymorphic-DNA (RAPD) analysis of rice seeds (Oryza sativa). 

S. 

No. 
Primer 

Band 

Scored 

Common Band in 

Control and Treated 

Unique Band 

Control Treated 

 
RPL 6A 17 13 3 − 

 
RPL 13A 13 13 − − 

 
RPL 16A 12 8 3 − 

 
RPL 18A 16 15 1 − 

 
RPL 19A 20 11 3 4 

−, No band 

5. Conclusions 

Based on study outcome, the biofield energy treated O. 

sativa showed faster with 100% germination as compared to 

the control. Moreover, the GSH content in treated sample was 

increased significantly by 639.26% of O. sativa seedling and 

56.24% in mature plants as compared with their respective 

control. Apart from this, the plants growth regulating 

constituent IAA was also increased significantly by 106.90% 

in rice roots, while 20.35% was increased in rice shoots as 

compared to the control. RAPD analysis data of the treated 

sample showed an average range of 5 to 46% of 

polymorphism among the primers as compared to the control. 

In conclusion, the present investigation demonstrates that Mr. 

Trivedi’s unique biofield treatment could be utilized as an 

alternate therapeutic approach concurrent with other existing 

therapy to improve the productivity of rice in the field of 

agriculture in the near future. 
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